Motion management for

indications beyond the thorax region

Per Poulsen, Danish Centre for Particle Therapy

DANISH CENTRE FOR PARTICLE THERAPY

Motion management for

indications beyond the thorax region liver

Per Poulsen, Danish Centre for Particle Therapy

DANISH CENTRE FOR PARTICLE THERAPY

Disclaimer

• Number of liver patients treated to date at DCPT: 0

Liver tumor motion

Liver versus thorax region

- Larger motion in general
- Less organ deformation
- More homogeneous tissue with smaller density variations
- Less complicated marker implantation

Agenda

- Proton trial for HCC
 - Gating latency, fiducial markers
 - Motion monitoring at treatment
 - Motion-including dose reconstruction
 - Non-uniform dose prescription
 - Summary

Hepatocellular carcinoma (HCC)

- ~350 new cases per year in Denmark
- Often cirrhotic liver and severe co-morbidity
- Poor survival rates:
 - <40% after 1 year
 - ~10% after 5 years
- Treatment options:
 - Surgery: Gold standard if possible
 - RF-ablation: Good local control for tumors <3 cm
 - X-ray SBRT: Good local control for tumors <5 cm. RILD is dose-limiting toxicity
 - Proton therapy: Can reduce irradiated normal liver volume and thus risk of RILD*

*Mizumoto IJROBP 2012, Hsieh IJROBP 2019

Danish national phase II study of proton therapy for HCC

- 50 patients not eligible for surgery, RF-ablation or transplantation
 - Tumors <5 cm (currently offered photon SBRT)
 - Tumors <12cm (total diameter of max 3 tumors, currently offered palliative TACE)
- Mean CTV dose:
 - 67.5 Gy(RBE) / 15fx (Peripheral tumors, >2 cm from porta)
 - 58 Gy(RBE) / 15fx (Central tumors, ≤ 2 cm from porta hepatis)

Danish national phase II study of proton therapy for HCC

- Imaging for planning: 4DCT, 3-4 exhale breath-hold CTs (with IV contrast)
- Will be repeated at day 3, 8 and 15
- Motion management strategy:
 - Exhale respiratory gating
 - Exhale breath-hold (only if breath-hold level is stable)
 - Free breathing (only if motion <1cm or gating not feasible)
 - Abdominal compression may be used
- Imaging at treatment:
 - CBCT for marker-based setup
 - X-ray imaging before or during each field delivery
 - External motion monitoring throughout the fraction

Danish national phase II study of proton therapy for HCC

- Primary endpoint: Death or RILD within 4 months after start of radiotherapy
- Secondary endpoints:
 - Toxicity, local control, survival
 - Normal liver sparing relative to x-ray RT
 - Ability to obtain planned dose when accounting for patient-specific uncertainties

Agenda

Proton trial for HCC

Gating latency, fiducial markers

- Motion monitoring at treatment
- Motion-including dose reconstruction
- Non-uniform dose prescription
- Summary

Gating latency measured with scintillating crystal

Proton pencil beam

- Pencil beam hitting a scintillating crystal
- Sinusoidal motion, gating
- Motion and light signal recorded with GoPro camera (120 fps)

Gating latency measured with scintillating crystal

Gating latencies:

- Beam-on latency $\tau_{on} \sim 270 \text{ ms} \quad (\rightarrow \text{Reduced duty cycle})$
- Beam-off latency $\tau_{off} \sim 104 \text{ ms} \quad (\rightarrow \text{Reduced accuracy})$
 - Errors <1mm in >95% of the beam-on time

Fiducial markers

- Transcutaneous implantation
- Marker choice is a compromise between:
 - High visibility in x-ray images (e.g. CBCT projections)
 - Acceptably low perturbation of the proton dose

Fiducial markers: 5 mm Visicoils

0.75mm Visicoil seems to be reasonable compromise

- ~8-10% dose perturbation
- Good x-ray visibility

Agenda

- Proton trial for HCC
- Gating latency, fiducial markers

Motion monitoring at treatment

- Motion-including dose reconstruction
- Non-uniform dose prescription
- Summary

Motion monitoring at treatment: Respiratory signal

- External surrogate
- Gives information on breathing phase and stability

Motion monitoring at treatment: X-ray imaging

- RGPT (Real-time-image gated proton therapy)
 - Hokkaido University
 - Gantry-mounted dual x-ray imagers
 - Intra-treatment fluoroscopy for gating

Yamada, Phys Med 2016

- Varian ProBeam (+other vendors)
 - Gantry-mounted dual x-ray imagers
 - Only used for patient positioning
 - Lacks solutions for fluoroscopy and for imaging during treatment

X-ray based motion monitoring at treatment

- 2. During treatment delivery:
 - Continuous respiratory signal \rightarrow 3D tumor motion estimated from ECM
 - Dual x-ray imaging during the fraction \rightarrow 3D tumor position \rightarrow Update ECM

Note: Similar to COSMIK on TrueBeam linac, Bertholet, PMB 2018

Drift of liver tumor ECM during treatment

From liver Calypso data, unpublished

Intrafaction x-ray imaging for ECM update

Three possibilities:

- 1. 10-20 x-ray image pairs before each field (The CyberKnife way)
- 2. 10 seconds dual x-ray fluoroscopy before each field
- 3. Dual x-ray fluoroscopy during each field

Agenda

- Proton trial for HCC
- Gating latency, fiducial markers
- Motion monitoring at treatment

Motion-including dose reconstruction

- Non-uniform dose prescription
- Summary

Motion-including dose reconstruction

Method 1: 4DCT dose reconstruction

- Basic assumption: 4D anatomy at treatment = 4D anatomy in 4DCT
 - The anatomy at treatment is fully described by the breathing phase

Liver tumor motion during (x-ray) treatments (KIM)

Poulsen, Radiother Oncol 2014

Liver tumor motion during (x-ray) treatments (Calypso)

Worm, IJORBP 2018

Motion-including dose reconstruction

Method 2: Spot-shift dose reconstruction

• Basic assumption: Respiratory deformations can be neglected in the tumor region

1. Manipulate the original treatment plan:

- Replace static spot map with motion spot map
- Emulate depth motion as proton energy shifts (*)
- 2. Recalculate motion-including plan in TPS

Colvill, PMB 2018

4DCT

Spot shift

Spot shift: Exhale

• Exhale phase (reference phase): Identical anatomy

Spot shift: Inhale (=shifted exhale)

- Exhale phase (reference phase): Identical anatomy
- Inhale phase:
 - Identical liver and diaphragm shape if motion is rigid
 - Wrong entrance beam path through rib cage

Colvill, PMB 2018

Motion-including dose reconstruction

Method 2: Spot-shift dose reconstruction

- Main limitation:
 - Only valid for tissue that moves rigidly with the tumor
 - Not good for OARs, not good in thorax
- Main advantage:
 - Accounts for actual tumor motion seen at treatment (incl drift, setup errors, BH)

Motion-including dose reconstruction

<u>Method 3: Dose reconstruction in 4DCT-MRI^(*)</u>

- Generate 4DMRI based on internal 2D navigator for image sorting^(**)
- Deform static reference 3DCT (from possibly another subject) to 4DMRI
- Accounts for deformations, cycle-to-cycle variations and drift motion
- Used in several studies of motion mitigation strategies (repainting etc)
- Limitation for dose reconstruction:
 - The 4DMRI is not the actual patient anatomy during treatment

(*) Boye, Med Phys 2013. Bernatowicz, IJROBP 2016

(**) von Siebenthal, PMB 2007

Other 4D motion models

- 5DCT (*)
- 25 free-breathing fast helical CT scans
- DIR to 1st scan

⇒ Deformation vector $\overrightarrow{X}(v,f)$ for each voxel as function of the amplitude (v) and time derivative (f) of the breathing signal

 \Rightarrow CT volume as function of v and f

(*)Low, PMB 2013. Dou, IJROBP 2015

Motion-including dose reconstruction

Method 4: DoseTracker

Developed for real-time motion-including dose reconstruction for x-ray RT

DoseTracker with real-time input from COSMIK (liver)

Treatment machine

Tumor position

Skouboe *et al*, Radiother Oncol 2019

Motion-including dose reconstruction

Method 4: DoseTracker

- Developed for real-time motion-including dose reconstruction for x-ray RT
- Ongoing adaptation to proton therapy:
 - Pencil-beam dose algorithm
 - Real-time ray-tracing through CT matrix

Ravkilde, PMB 2014. Skouboe, Radiother Oncol 2019
Agenda

- Proton trial for HCC
- Gating latency, fiducial markers
- Motion monitoring at treatment
- Motion-including dose reconstruction
- Non-uniform dose prescription
 - Summary

Non-uniform dose prescription

- Often used for x-ray based SBRT
 - Allows higher tumor dose for same toxicity risk
- Could non-uniform dose prescription be feasible for proton SBRT of liver tumors?

Prescribed dose in x-ray SBRT

Generation of iso-toxic proton plans

Uniform robust plan

 $D98 \ge 95\%$ without motion

 $D98 \ge 95\%$ with 4DCT motion

Non-uniform robust plan

- D98 \geq 95% without motion
- D98 \geq 67% with 4DCT motion

Worm et al, PMB 2021

Treatment simulations

14 liver SBRT patients, 42 fractions simulated

- Non-uniform and uniform plans
- With 4DCT motion and Calypso-measured motion
- With and without breath-sampling repainting (*)
 - Even distribution of repaintings over the breathing cycle
 - Wait time between spots used to extend layer duration to one cycle
 - 1,2,4,8 or 16 interlaced repaintings depending on spot MU
 - Very efficient interplay migration after few fractions
- Dose reconstruction by spot-shift method

Worm et al, PMB 2021

Static:

- Non-uniform plans: Average D98 = 46.6 Gy
- Uniform plans: Average D98 = 36.7 Gy

4DCT motion:

• Largest relative drop in D98 for non-uniform plans, but still higher absolute D98

Calypso motion, delivery of 1 fraction:

- Larger drop in D98 than with 4DCT motion and most for non-uniform plans
- Non-uniforms plans have highest D98 for 37 out of 42 fractions

Calypso motion, delivery of 3 fraction with repainting:

- Non-uniforms plans have highest D98 for 13 out of 14 patients
- On average D98 was 15.2 % higher with non-uniform plans

Calypso motion, delivery of 1 fraction:

Large D2 variations because of interplay effects

Scenario

Calypso motion, delivery of 3 fractions with repainting:

Small D2 variations (effective interplay mitigation)

Summary: Non-uniform dose prescription

- The gain in CTV dose by non-uniform dose prescription clearly outweighed the lower robustness against motion
- Non-uniform dose-prescription may provide a better trade-off between achievable CTV dose and normal tissue dose for proton therapy in the liver

Agenda

- Proton trial for HCC
- Gating latency, fiducial markers
- Motion monitoring at treatment
- Motion-including dose reconstruction
- Non-uniform dose prescription

Summary: DCPT plans for PT of HCC

- National HCC protocol almost ready to go
- Non-gated or exhale gated (FB or BH)
- No repainting planned (15 fractions)
- Setup CBCT \rightarrow 60 sec tumor motion trajectory \rightarrow ECM
- ECM + intrafraction x-ray imaging \rightarrow tumor motion during treatment
 - Spot shift dose reconstruction for each fraction
 - Gradual move from offline to online real-time with DoseTracker

Summary: Some discussion points

- Use of fiducial markers in the liver
- How best to monitor liver tumor motion during treatment?
- Motion-including dose reconstruction?
- How to make more realistic and accessible patient models?
- Uniform versus non-uniform dose prescription
- How to convince vendors to develop software and workflows for better use of their built-in x-ray imagers (fluoroscopy, dual-energy CBCT, etc)?

• Esben Worm

- Jakob Borup Thomsen
- Rune Hansen
- Thomas Ravkilde
- Simon Skouboe
- Britta Weber
- Hanna Rahbek Mortensen